Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shi-Guo Zhang, ${ }^{\text {a }}$ Wei-Nan Li ${ }^{\text {b }}$ and Jing-Min Shi ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Institute of Material Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Shandong Normal University, Jinan 250014,
People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.048$
$w R$ factor $=0.099$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[(μ-4-methylpyridine \boldsymbol{N}-oxide)bis(μ-thiocyanato)cobalt(II)]

In the title complex, $\left[\mathrm{Co}(\mu-\mathrm{NCS})_{2}\left(\mu-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\right]_{n}$, both the thiocyanate and 4-methylpyridine N-oxide ligands coordinate to the $\mathrm{Co}^{\mathrm{II}}$ atom as bridging ligands, forming a twodimensional sheet structure. There is a non-classical C $\mathrm{H} \cdots \mathrm{S}$ hydrogen bond in the sheet.

Comment

Both thiocyanate and pyridine N-oxide are very useful bridging ligands. A number of multinuclear complexes have been synthesized with one or both of them as bridging ligands and some of the complexes display interesting physical properties (Shi, Sun et al., 2006). Interest in complexes containing both ligands resulted in the synthesis of the title complex, (I), and we report its structure here. The synthesis of (I) was almost identical to that of the one-dimensional polymer $\left[\operatorname{Co}\left(\mu_{1,3^{-}}\right.\right.$ $\left.\mathrm{SCN})\left(\mu-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)(\mathrm{SCN})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]_{\mathrm{n}}$ (Shi, Liu et al., 2006), but the difference in the solvents led to the formation of the two complexes with distinct structures.

The $\mathrm{Co}^{\text {II }}$ atom assumes a distorted octahedral $\mathrm{CoO}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ coordination geometry (Fig. 1 and Table 1). Two 4-methylpyridine N-oxide molecules coordinate to two symmetryrelated $\mathrm{Co}^{\text {II }}$ ions, with a $\mathrm{Co} 1 \cdots \mathrm{Co} 1^{\mathrm{iii}}$ separation of 3.4452 (14) \AA (symmetry code as in Table 1), forming a binuclear four-membered ring. Adjacent pairs of $\mathrm{Co}^{\mathrm{II}}$ atoms are connected by the coordination of two $\mu_{1,3}-\mathrm{SCN}$ bridging ligands, creating an eight-membered ring; the Co \cdots Co distances are 5.657 (2) and 5.690 (2) \AA for $\mathrm{Co} 1 \cdots \mathrm{Co}^{1}{ }^{\mathrm{i}}$ and Co1 \cdots Co1 ${ }^{\text {ii }}$, respectively (symmetry codes as in Table 1). In this complex, a two-dimensional sheet structure is formed

Received 25 October 2006
Accepted 21 November 2006

Figure 1
Part of the polymeric structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme (symmetry codes as in Table 1).

Figure 2
Packing diagram of (I), showing the two-dimensional sheet structure.
(Fig. 2). In the two-dimensional structure, there is a 34 membered ring formed by eight $\mu_{1,3}-\mathrm{SCN}$ bridging ligands, four μ-4-methylpyridine N-oxide ligands and six $\mathrm{Co}^{\mathrm{II}}$ ions. A non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond (Table 2) is also observed in the sheet.

The 4-methoxypyridine analogue has been reported in a previous paper (Zhang et al., 2006).

Experimental

$\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.2036 \mathrm{~g}, 0.556 \mathrm{mmol})$, 4-methylpyridine N -oxide $(0.0611 \mathrm{~g}, 0.560 \mathrm{mmol})$ and $\mathrm{NaSCN}(0.0905 \mathrm{~g}, 1.12 \mathrm{mmol})$ were separately dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$, and then the three solutions were mixed together. Blue single crystals of (I) were obtained after allowing the mixed solution to stand at room temperature for one month.

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
$M_{r}=284.24$
Triclinic, $P \overline{1}$
$a=7.945$ (3) A
$b=8.170$ (3) \AA
$c=9.642$ (3) A
$\alpha=71.059(5)^{\circ}$
$\beta=76.441(5)^{\circ}$
$\gamma=72.690(4)^{\circ}$

Data collection

Bruker SMART APEX CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.478, T_{\text {max }}=0.864$

$$
\begin{aligned}
& V=558.5(3) \AA^{3} \\
& Z=2 \\
& D_{x}=1.690 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.88 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, blue } \\
& 0.46 \times 0.16 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0352 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$w R\left(F^{2}\right)=0.099$
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}_{\AA^{-3}}$
1981 reflections
137 parameters

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	2.052 (4)	$\mathrm{Co} 1-\mathrm{O} 1^{\text {iii }}$	2.149 (3)
$\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	2.036 (4)	Co1-S1	2.5156 (16)
Co1-O1	2.097 (3)	Co1-S2	2.6500 (15)
$\begin{aligned} & \text { Symmetry } \\ & -x+1,-y \end{aligned}$	$-x,-y+$	$+1 ; \quad \text { (ii) }$	$z+1 ; \quad \text { (iii) }$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 2 \cdots \mathrm{~S} 2^{\text {iii }}$	0.93	2.86	$3.590(6)$	137

Symmetry code: (iii) $-x+1,-y+1,-z+1$.
H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

metal-organic papers

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2005B25).

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.
Shi, J.-M., Liu, Z., Sun, Y.-M., Yi, L. \& Liu, L.-D. (2006). Chem. Phys. 325, 237242.

Shi, J.-M., Sun, Y.-M., Liu, Z., Liu, L.-D., Shi, W. \& Cheng, P. (2006). Dalton Trans. pp. 376-380.
Zhang, S.-G., Li, W.-N. \& Shi, J.-M. (2006). Acta Cryst E62, m3398-m3400.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

